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The paper deals with the bifurcation analysis of a rather simple model describing an automobile
negotiating a curve. The mechanical model has two degrees of freedom and the related equations of
motion contain the nonlinear tyre characteristics. Bifurcation analysis is adopted as the proper proce-
dure for analysing steady-state cornering. Two independent parameters referring to running conditions,
namely steering angle and speed, are varied. Ten different combinations of front and rear tyre char-
acteristics (featuring understeer or oversteer automobiles) are considered for the bifurcation analysis.
Many different dynamical behaviours of the model are obtained by slightly varying the parameters
describing the tyre characteristics. Both simple and extremely complex bifurcations may occur. Homo-
clinic bifurcations, stable and unstable limit cycles (of considerable amplitude) are found, giving a
sound and ultimate interpretation to some actual (rare but very dangerous) dynamic behaviours of auto-
mobiles, as reported by professional drivers. The presented results are cross-validated by exploiting
handling diagram theory. The knowledge of the derived set of bifurcations is dramatically important
to fully understand the actual vehicle yaw motions occurring while running on an even surface. Such
a knowledge is a pre-requisite for robustly designing the chassis and for enhancing the active safety
of vehicles.

Keywords: two-wheel model; tyre characteristics; handling diagram theory; two-parameter
bifurcation analysis; active safety

1. Introduction

The great majority of drivers uses for most of the time their automobiles within the linear range
of tyre characteristics [1]. In other words, a suitable mathematical model for describing the
normal everyday running of an automobile can safely be linear. There are, however, rare but
important cases in which the automobile exploits the nonlinear part of the tyre characteristics.
A major example refers to accident avoidance manoeuvres, in which a well-designed vehicle
can make the difference between a dramatic or an even unnoticed event. Motorsport is another
field in which the tyre nonlinear characteristics play a crucial role. Usually, control laws
for the anti-lock braking system and for the yaw motion are tested on iced surfaces to let
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1540 F. Della Rossa et al.

nonlinear phenomena occur in a repeatable way. The aim of this paper is to focus on the many
different dynamic behaviours that are possible as a consequence of different combinations of
the nonlinear characteristics of the tyres. As a matter of fact, a comprehensive understanding
of such phenomena can enable a robust design of both the vehicle and its nonlinear controls
devoted to enhance active safety.

A general approach for studying and classifying the behaviours of a nonlinear system
when one or a few parameters are varied is bifurcation analysis [2]. In the recent litera-
ture on road vehicle dynamics [3,4], bifurcation analysis has been successfully applied to
study driveline vibrations [5], vertical vibrations [6,7], tractor semi-trailer vibrations [5,8],
and the interaction among vehicles in the traffic (vehicle following and overtaking) [9].
Nonlinear controls for enhancing stability have also been conceived based on bifurcation
analysis [10,11].

The nonlinear dynamic behaviour of an automobile was first addressed in a smart early
contribution [12], later refined in the excellent book by Pacejka [8]. Other refinements were
given in [13,14]. In [8] a bifurcation analysis was performed to assess qualitatively how
automobiles miss their stability and which kind of transient motion has to be expected when
the equilibrium is disturbed. In [13], a further analysis with respect to what appeared in [12]
was presented. In [14], the main problem addressed in the present paper was stated and shortly
dealt with, and the complete spin of cars was studied. In [15–17], bifurcation analysis of the
running vehicle were performed on rather complex vehicle systems in which the driver action
is included.

In none of the above contributions, however, a comprehensive analysis has been made
referring to all the possible behaviours that can be found by combining in every possible way
the tyre nonlinear characteristics. This paper attempts to cover such a fundamental issue, in the
perspective of modern bifurcation analysis. Bifurcation diagrams will be produced to analyse
at a glance the influence on bifurcations of a couple of parameters.

A well-known problem – often underestimated or even neglected when analysing vehicle
dynamics – is the computation of the equilibria of road vehicles at high lateral acceleration
levels [3,4,8]. Usually only one equilibrium is computed, neglecting the existence of the many
additional equilibria that are possibly generated by the nonlinear characteristics of tyres [3,4].
The handling diagram theory [8] is an invaluable tool to support the bifurcation analysis of the
dynamic behaviour of a road vehicle and, for this reason, such a theory will be used hereafter.A
detailed bifurcation analysis will be carried out on a relatively simple model of a car, allowing
to perform a complete and reliable computation of the many occurring equilibria. Although
based on a simplified model, the results presented in this paper are significant and important,
because the simple two degrees-of-freedom (d.o.f.) model can reproduce the actual vehicle
motion when the ground surface is slippery (e.g. with ice or snow). Indeed, in such a case,
the forces acting on the suspension system are small and their influence on the motion of
the vehicle is almost negligible, so that the suspensions can be removed from the model [1].
Actually, all the control systems for enhancing stability (such as Anti-lock Braking System
and Electronic Stability Program) are often designed by means of the addressed two d.o.f.
systems presented in this paper, the validation tests being performed on slippery surfaces [18].

The paper is organised as follows. First, we present the model used for the analysis. Then
the bifurcations of equilibria are computed for a number of different combinations of front
and rear tyre characteristics, and the results are verified and discussed by using the handling
diagram theory. The cases of particular interest are highlighted. For the reader who is not
familiar with bifurcation analysis, the basic theoretical tools used in the paper are described
in the appendix. Similarly, a concise introduction to the handling diagram theory is given
in Section 3 for those who are not familiar with this tool, although this part can be skipped
without compromising the reading of the remainder.
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Vehicle System Dynamics 1541

2. System model

The mechanical model used for the bifurcation analysis is the well known two d.o.f. single-
track model [1,8,13,19] shown in Figure 1. The main hypotheses are:

• the forward speed u is constant;
• the centre of gravity lies at the ground level;
• the vehicle body is modelled referring to its longitudinal axis;
• the resultant of the forces acting at the fore and rear axles are applied at the centres of the

axles;
• the slip angles αi, i = 1, 2, and the steering angle δ (see Figure 1) are small;
• no longitudinal forces are acting at the wheels.

Under such hypotheses, the equations of motion read [8]

m(v̇ + ur) = Fy1 + Fy2 ,

Izṙ = Fy1 a − Fy2 b,
(1)

where v is the lateral speed, r is the yaw rate, subscripts 1 and 2 refer, respectively, to the
front and rear axle, Fyi is the lateral force on the ith axle, m is the vehicle mass, a and b are
the horizontal distances, respectively, of the front and the rear axle centre from the vehicle’s
centre of mass, Iz is the moment of inertia of the vehicle around the vertical axis at the centre
of gravity.

The kinematical variables are related by the following equations:

−α2 = v − rb

u
,

δ − α1 = v + ra

u
.

(2)

Eliminating v and r from Equations (1) and (2), it is possible to rewrite the equations of motion
as the following ordinary differential equations:

α̇ = f (α, u, δ) ⇒

⎧⎪⎪⎨
⎪⎪⎩

α̇1 = g

u

[
(δ − α1 + α2)

u2

gl
− Fy1 + Fy2

mg
− a(Fy1 a − Fy2 b)

Izg

]

α̇2 = g

u

[
(δ − α1 + α2)

u2

gl
− Fy1 + Fy2

mg
− b(Fy2 b − Fy1 a)

Izg

]
,

(3)

Figure 1. Representation of the single-track model.
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1542 F. Della Rossa et al.

Table 1. Parameter values of the vehicle model used in the paper.

Mass m 950 kg
Moment of inertia around the vertical axis Iz 1100 kg m2

Wheelbase l 2.46 m
Distance of the front axle centre from the centre of mass a 0.95 m

where g is the gravitational acceleration and l = a + b is the wheelbase. The lateral forces
Fyi (i = 1, 2) can be expressed as functions of the slip angles αi by the tyre characteristics,
which are nonlinear and take the analytical form [8]

Fy1(α1) = D1 sin(C1 tan−1(B1α1 − E1(B1α1 − tan−1(B1α1)))),

Fy2(α2) = D2 sin(C2 tan−1(B2α2 − E2(B2α2 − tan−1(B2α2)))),
(4)

where

D1 = μ1
mg

l
b, D2 = μ2

mg

l
a,

and μ1 and μ2 are the friction coefficients, respectively, of the front and the rear tyres.
The parameter set can be divided into three subsets: the vehicle parameters (m, Iz, a, l),

whose values are reported in Table 1, the tyre parameters (μi, Bi, Ci, Ei, i = 1, 2) which will
be specified in the next section, and the parameters (u, δ) which represent the driver inputs.

3. Computation of the equilibria by the handling diagram theory

The behaviour at the steady-state cornering of the vehicle model of Figure 1 can be obtained
by a geometrical procedure which is based on the handling diagram theory [8,13,19,20], an
invaluable tool to analyse the nonlinear effects at high lateral acceleration levels. For the sake
of brevity, only the basic elements will be summarised here – a detailed treatment can be found
in [8] to which the reader is referred for a complete treatment. At steady state, after a proper
arrangement of the equations of motion of the vehicle (referring both to lateral and vertical
directions), the following relationships can be derived [8,20]:

Fy1

Fz1

= Fy2

Fz2

= u2

ρg
, (5)

where ρ is the radius of the negotiated curve, and Fzi (i = 1, 2) are the vertical forces acting,
respectively, at the front and rear tips of the beam of Figure 1. The Fzi -s are orthogonal with
respect to the horizontal plane where the beam lies, and represent the resultants of the vertical
forces acting, respectively, at the front and rear axles of the vehicle. Such resultants read as
follows (see Figure 1):

Fz1 = mg
b

l
Fz2 = mg

a

l
. (6)

The key fact described by Equation (5) is that, at steady-state cornering, the values of effective
axle characteristics Fy1/Fz1 , Fy2/Fz2 are given once the non-dimensional lateral acceleration
u2/(ρg) is specified.

Equation (5) can be geometrically interpreted as shown in Figure 2: on the right side of the
figure, the effective front and rear axle characteristics Fy1(α1)/Fz1 , Fy2(α2)/Fz2 are drawn as
functions of the respective front and rear slip angles. Equation (5) implies that each horizontal

D
ow

nl
oa

de
d 

by
 [

Po
lit

ec
ni

co
 d

i M
ila

no
 B

ib
l]

 a
t 0

1:
05

 1
4 

Se
pt

em
be

r 
20

12
 



Vehicle System Dynamics 1543
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Figure 2. Representation of Equation (5) and construction of the handling curve. Right: front and rear effective
axle characteristics (continuous line Fy1 (α1)/Fz1 , dotted line Fy2 (α2)/Fz2 ). Left: derivation of the handling curve by
taking the difference of the two effective axle characteristics at a given value of u2/(ρg). Notice that the handling
curve is a function of α1 − α2: the axis α1 − α2 is reported on top of the figure.

line (at a given u2/(ρg)) defines the lateral slips α1 and α2 at steady-state cornering. By taking
the difference α1 − α2 at each given value u2/(ρg), the handling curve in the left part of the
figure is derived. The handling curve is a function of α1 − α2: the α1 − α2 axis is reported on
the top of the figure.

As described in [1,8], the quantities δ, l, ρ, α1, α2 are related by

δ = l

ρ
+ α1 − α2, (7)

so that the handling curve provides information on the steering angle δ needed to negotiate
a curve of radius ρ. Consider now the diagram of Figure 3: on the left side, we replicate the
handling curve plotted in Figure 2, whereas on the right side, which is the plane (l/ρ, u2/(ρg)),
every straight line through the origin is a locus of points at equal constant speed, since
u2/(ρg) = γ (l/ρ) implies γ = u2/(gl) = constant. Given a vehicle model (specified by the
wheelbase l and by the handling curve), the driver inputs (u, δ) univocally determine both
the straight line with slope γ = u2/(gl), and its translation to the left of the quantity δ (see
the dashed line in Figure 3), since δ = l/ρ + α1 − α2. At this point, the intersection of the
handling curve with the dashed straight line yields the values of α1 − α2 and u2/(ρg) and,
consequently, of the curve radius ρ. All the variables characterising the steady-state behaviour
have, therefore, been obtained.

From what is illustrated above, it is evident that the handling curve is a fundamental tool for
describing the vehicle behaviour. In Figures 4 and 5, a number of handling curves are plotted
with the corresponding tyre parameters: they are obtained for different combinations of front
and rear tyre characteristics. The handling curves are divided into two groups: vehicles that at
low lateral acceleration u2/ρg are understeering (labelled UN) in Figure 4, and vehicles that
at low lateral acceleration are oversteering (labelled OV) in Figure 5. A vehicle is defined as
understeering (resp. oversteering) if [1]

∂(δ − l/ρ)

∂(u2/ρg)
= ∂(α1 − α2)

∂(u2/ρg)
< [>]0. (8)
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Figure 3. The steady-state behaviour of a car negotiating a curve at speed u with steering angle δ is obtained by
translating the straight line with slope u2/(gl) to the left of a quantity δ, and finding the intersection with the handling
curve.

In other words, the understeering (resp. oversteering) character is related to the negative (resp.
positive) derivative of α1 − α2 with respect to u2/(ρg) in the handling curve. Physically,
this means that, increasing the speed, an understeering (resp. oversteering) vehicle naturally
increases (resp. decreases) the radius of the bend which is negotiating.

It is important to notice that, since the handling curve is derived as the difference α1 − α2

at a given u2/(ρg), depending on the functional form of the front and rear effective axle
characteristics multiple equilibria can be obtained, especially at high lateral acceleration levels.
For example, in the case of Figure 6(a), multiple equilibria are found if we fix the speed u
and vary the steering angle δ. Indeed, three different equilibria are found at δ = δA = 0 and at
δ = δB �= 0, two at δ = δC , and only one at δ = δD. In Figure 6(b), the different steady-state
attitudes of the vehicle model of Figure 1 at the different equilibria pointed out in Figure 6(a)
are shown.

4. Bifurcation analysis

A general approach for studying Equation (3) is provided by bifurcation analysis, which is a
powerful tool of nonlinear systems theory aimed at analysing and classifying the behaviours of
a system when one or more parameters are varied [2]. Typically, the analysis starts by studying
an equilibrium, and by deriving the dependence of its coordinates on a parameter. In doing
so, a bifurcation, namely a structural change in the system behaviour, is possibly detected.
By systematically analysing all the equilibria and their bifurcations, a complete catalogue of
the system behaviours with respect to the admissible parameters’ values is eventually derived.
A concise review of the main concepts of bifurcation analysis is in the appendix, where the
reader will find a description of all the terms used in this section.

A detailed, introductory example is presented in Figure 7, where the same case as that
of Figure 6 is considered. The upper-left panel displays the dependence of the equilibria
coordinates (α1, α2) on the parameter δ. The curves are obtained by means of a continuation
algorithm. As already pointed out in the previous section, for small values of the steering
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Figure 4. Different types of understeering vehicles at low lateral acceleration. In the left column, the coefficients of
the tyre characteristics (Equation (4)) are reported. In the central column, the effective axle characteristics are plotted
(continuous line Fy1 (α1)/Fz1 , dotted line Fy2 (α2)/Fz2 ). In the right column, the corresponding handling diagrams
are derived. Notice that the plots in the right column are derived also for negative Fyi , although not shown in the plots
of the central column.
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Figure 5. Different types of oversteering vehicles at low lateral acceleration.
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Figure 6. (a) Multiple equilibria of the vehicle model of Figure 1 are found from the handling curve, for a given
speed u, at different steering angles δi (i = A, B, C, D). (b) Steady-state attitudes of the vehicle of Figure 1 at the
equilibria ei

j (j = 1, 2, 3).

angle (δ < δC), three equilibria are possible, denoted by ei
j (i = A, B, j = 1, 2, 3) in the figure.

For a large steering angle (δ > δC), however, only one unstable equilibrium eD
3 exists. If we

increase δ from 0, at δ = δC = 0.0755, the equilibria e1 and e2 collide and disappear in a
saddle-node (SN) bifurcation, marking an abrupt qualitative change in the behaviour of the
nonlinear system. The crucial role of the bifurcation also emerges from the phase plots to
of Figure 7, which clearly show that the SN bifurcation divides the entire region of possible
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Figure 7. An example of bifurcation analysis of the vehicle model of Figure 1 (Equation (3)) with respect to the
parameter δ (the speed is fixed at u = 20). The phase portraits (right panels) correspond to the δ values marked from

to in the bifurcation diagram (upper-left panel). No stable equilibria exist for δ > δC (phase portrait ).
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1548 F. Della Rossa et al.

running conditions into two well distinct parts, since only for δ < δC a stable equilibrium
exists.

Let us now compare the results of Figure 7 with those obtainable from the handling diagram
theory. If we consider again Figure 6, for a given speed u and steering angle δ = δA = 0, we
identify three different equilibrium behaviours, one stable and the other two unstable. By
increasing δ, equilibria e1 and e2 approach each other and, at δC , they collide and disappear.
This is exactly what has been observed by bifurcation analysis: however, even in this basic
example, there is one phenomenon that only the latter approach is able to detect. Compare
the phase planes and in Figure 7: an important, qualitative change takes place between
them, since the basin of attraction of e2 (the only stable equilibrium) changes its topology and
dramatically shrinks: this greatly restricts the set of perturbations that can safely be absorbed.
The phenomenon is due to a heteroclinic bifurcation occurring at a value of δ between δA and
δB (δ = 0.072), a type of bifurcation that can be detected and studied with standard tools.

Since bifurcations play a strategic role for understanding the vehicle dynamics, we will
focus on finding the combinations of the input parameters (δ, u) at which system (3) has
a bifurcation. These combinations define the bifurcation curves in the (δ, u)-plane, which
separate regions with different qualitative behaviours. Consider, for example, the problem
of deriving the SN bifurcation curve. We already have one point of this curve, because the
analysis of Figure 7 revealed, for fixed u = 20, an SN bifurcation at δ = 0.0755. By a proper
continuation algorithm (see Appendix), the entire SN curve in the (δ, u) can be derived. A
similar approach can be followed for obtaining the heteroclinic (HET) bifurcation curve. The
results are depicted in the left panel of Figure 8. Any combination (δ, u) on the left of the SN
curve refers to cases in which a stable equilibrium exist, whereas no stable equilibria are found
on the right of SN. Moreover, by crossing the HET curve from the left to the right, the basin
of attraction of the stable equilibrium shrinks dramatically and changes topology (Figure 7).

It is worth noticing that, in principle, the SN curve can be obtained by means of the handling
diagram too, as illustrated in the right panel of Figure 8. In fact, the SN curve is the (δ, u)

locus of points at which the dashed line is tangent to the handling curve. As the speed u
increases, the slope of the tangent line increases too, but its intersection with the horizontal
axis (i.e. the steering angle δ) decreases. When u → ∞, the tangent line approaches the vertical
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Figure 8. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case UN1 of Figure 4. SN1,2 is a curve of SN bifurcation of equilibria e1 and e2, HET is a curve of heteroclinic
bifurcation of the saddles e1 and e3. Points to correspond to the phase planes of Figure 7.
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Vehicle System Dynamics 1549

orientation and δ → δ∞. For δ < δ∞ whatever speed u can be attained at stable steady-state
running condition. Notice, however, that the handling diagram approach is unable to detect
the phenomena connected with the heteroclinic bifurcation.

To summarise, we can claim that bifurcation analysis generalises the handling diagram
approach and considerably enlarges its scope. As a matter of fact, in the remainder of this
section, we will exhaustively analyse the 10 cases listed in Figures 4 and 5, and we will
discover a variety of bifurcations which are associated with a variety of phenomena, from the
sudden disappearance of stable equilibria (or of part of their basin of attraction, as in Figure 7),
to the birth of oscillatory behaviours (limit cycles). Some of these phenomena can by no means
be discovered by using handling diagrams. Furthermore, the approach of bifurcation analysis
can in principle be applied to any model other than Equation (3), thus allowing a more refined
description of the vehicle dynamic behaviour.

4.1. Understeering cases

4.1.1. Case UN0

This case is extremely important because it corresponds to what should be obtained by a proper
design of the automobile. Actually, only one stable equilibrium exists for every combination
of the steering angle δ and forward speed u. It is a globally stable equilibrium, namely in
principle any perturbation is absorbed, which implies that the vehicle is controlled by the
driver in a relatively easy way. This case was discussed in [8].

The other cases, analysed below, basically take place as a consequence of a wrong design
of the tyre-chassis system, or due to special occurrences such as unequal wear or irregular
pressure of the tyres, for example.

4.1.2. Case UN1

This case has already been considered before (Figures 6 and 7). Three equilibria occur (two
unstable and one stable) and the basin of attraction suddenly shrinks as the forward speed u
increases, as discussed in [13]. Two bifurcations take place: the first one is heteroclinic and
its occurrence dramatically modifies the basin of attraction. The second bifurcation is an SN
one, and can also be detected by inspection of the handling diagram, as shown in Figure 6(a).

4.1.3. Case UN2

Three bifurcations occur in this case (which was partially analysed in [21]): heteroclinic,
homoclinic, and Bogdanov–Takens. The first and second ones are briefly described in the
appendix, whereas we refer to [2, p. 316], for details on the third one, although the basic
phenomena related to this bifurcation are described below. The combined action of the homo-
clinic and Bogdanov–Takens bifurcations gives rise to an unstable limit cycle around the
stable equilibrium, which limits its basin of attraction. Let us analyse the phase portraits of
Figure 9:

This is the most desirable situation for this case, although the basin of attraction is such
that only bounded perturbations can be absorbed.
Heteroclinic bifurcation. The unstable manifold of the SN e3 is connected to the other
saddle point e1 instead of being connected to the stable equilibrium, as in the previous
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Figure 9. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case UN2 of Figure 4. The phase portraits to correspond to the (δ, u) values reported in the bifurcation diagram
(central panel). BT is a curve of Bogdanov–Takens bifurcation.

case . The stable equilibrium is dangerously close to the border of the basin of attraction.
The basin of attraction is further shrunk, and is now defined by the stable manifolds of
the saddle e1 only. Again the stable equilibrium is almost on the border of its basin of
attraction.
Bogdanov–Takens bifurcation: it is a complex bifurcation that occurs in this system
because, due to symmetries, a number of phenomena take place at the same parame-
ters’ value. The equilibria e1 (saddle) and e2 (stable focus) merge but do not disappear.
This is due to the fact that the axle characteristics have the same maximum value, as shown
in the handling diagram of Figure 9. As a matter of fact, due to this simmetry a transcritical
bifurcation takes place, instead of an SN one. An additional bifurcation (subcritical Hopf)
actually occurs at this point, giving birth to an unstable limit cycle.
After the Bogdanov–Takens bifurcation, equilibria e1 and e2 have somehow exchanged
their role, both topologically (now e1 lies at the left of e2) and dynamically (e1 is now a
stable focus and no longer a saddle). The basin of attraction around e1 is now bounded
by an unstable limit cycle, in accordance to what pointed out in [21]. The time period
of the cycle varies between zero and infinity. Actually, just after the Bogdanov–Takens
bifurcation the limit cycle is tiny and has small period. When the subsequent homoclinic
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Vehicle System Dynamics 1551

bifurcation is about to occur, the period of the limit cycle approaches infinity (see state
portrait ).
Homoclinic bifurcation. The stable and unstable manifolds of the saddle e2 join each other.
The limit cycle has disappeared.
The size of the basin of attraction, which is again unbounded on one side, increases with
δ. The portrait is not much different than the one depicted in .

4.1.4. Case UN3

The only bifurcation taking place in this case is a heteroclinic one (Figure 10).

Similarly to case UN1, three equilibria can be found: one is a stable node, the others are
saddles. The basin of attraction is bounded by the stable manifolds of the two saddles e1

and e3.
The basin of attraction is reduced and is now bounded by the stable manifolds of e1 only.

In the previous cases UN1 and UN2, a relationship between bifurcations and handling
diagram was pointed out, in the sense that we were able to infer some information about the
occurrence of bifurcations by the exam of the handling diagram, especially at the intersections
of its main branch with some isolated branches (see [8, p. 42]). This is not true in this case
UN3, because such intersections do not correspond to any bifurcation. As a matter of fact,
in UN1 and UN2 the SN and Bodanov–Takens bifurcations occurred when the two equilibria
e1 and e2 merged, i.e. when (α1, α2)|e1 = (α1, α2)|e2 . This obviously implies (α1 − α2)|e1 =
(α1 − α2)|e2 , but the reverse is not true. Indeed, in case UN3 we have that, when the latter
equation holds (i.e. at the branch intersections of the handling diagram), the two equilibria
remain distinct, namely (α1, α2)|e1 �= (α1, α2)|e2 , so that no bifurcation occurs.

4.1.5. Case UN4

In this case, two SN bifurcations occur (Figure 11). In the bifurcation diagram, the notation
SNi,j refers to the collision of equilibria ei and ej.

For small values of the steering angle δ and of the speed u, five equilibria are present.
The two couples of equilibria coming from the isolated branches of the handling diagram
are all unstable (e2 and e4 are saddles, e1 and e5 are unstable nodes or foci), while the
central equilibrium e3 is stable. One of the branches of the stable manifold of the saddles
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Figure 10. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case UN3 of Figure 4. The phase portraits and correspond to the (δ, u) values reported in the bifurcation
diagram (left panel).
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1552 F. Della Rossa et al.

Figure 11. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case UN4 of Figure 4. The phase portraits to correspond to the (δ, u) values reported in the bifurcation diagram
(upper-left panel).

is unbounded (i.e. it comes from infinity). The effect of this topology is the following:
although trajectories converge to the stable equilibrium e3 from any initial condition (with
the exception of the four unstable equilibrium points), some trajectories will make a large
tour before reaching e3. This means that perturbations are absorbed but possibly with large
overshooting.
At bifurcation SN1,2 the saddle e2 and the unstable equilibrium e1 collide and disappear.
The behaviour of the system does not change very much with respect to the previous case.
At bifurcation SN4,5 the saddle e4 and the unstable equilibrium e5 collide and disappear.
This is a critical case in which two bifurcations simultaneously occur at the same parameter
combination (δ, u).

4.2. Oversteering cases

4.2.1. Case OV0

Three equilibria are possible for suitable (δ, u) values: two of them are saddles (e1 and e3) and
the other is a stable node (e2) (Figure 12).

, The stable manifolds of the saddles e1 and e3 form the boundary of the basin of attraction
of the stable node e2. Case represents a more dangerous situation than case because
the stable equilibrium eA

2 is next to the border of the basin of attraction.
, The saddle e1 and the stable equilibrium e2 collide and disappear in an SN bifurcation

SN1,2. No stable behaviour is possible for (δ, u) values above the bifurcation curve.

At zero steering angle δ, if the forward speed u is increased, a different bifurcation occurs
between and . It is a subcritical pitchfork bifurcation, in which the two saddles e1 and e3
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Vehicle System Dynamics 1553

Figure 12. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case OV0 of Figure 5. The phase portraits to correspond to the (δ, u) values reported in the bifurcation diagram
(upper-left panel).

collide with the stable equilibrium e2, disappear and leave e2, unstable, as the only equilibrium.
This is the well-known unstable straight running of oversteering vehicles [8].

4.2.2. Case OV1

Three SN bifurcations are found (Figure 13). Most notably, multiple stable equilibria are
present, unlike the previous cases, which implies that, surprisingly, it is possible to negotiate
different bends (up to three) at given speed and steering angle. The handling diagram reveals
that the vehicle is actually oversteering at low lateral acceleration level, but understeering at
high lateral acceleration levels. This implies that stable equilibria with high lateral acceleration
can exist. It may even happen that the vehicle is unstable for straight running, but is stable at
high lateral acceleration.

Five equilibria are found: two of them are saddles (e2, e4) and three (e1, e3, e5) are stable
ones. The three basins of attraction cover the entire phase space, which implies that no
perturbation gives rise to unstable behaviour. The stable manifolds of the saddles form
the boundaries of the basin of attraction.
The saddle e2 and the stable equilibrium e3 collide and disappear at the SN bifurcation
SN2,3. The bifurcation is catastrophic, but trajectories do not diverge to infinity, but remain
bounded because they are captured by the basin of attraction of one of the other stable
equilibria.
Only one stable equilibrium is present. Surprisingly, if the steering angle δ is sufficiently
large, increasing the forward speed u does not cause any catastrophe. Indeed, for δ ≥ 4.3,
the equilibrium e1,3 does not undergo any bifurcation (although its basin of attraction is
modified).
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1554 F. Della Rossa et al.

Figure 13. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case OV1 of Figure 5. The phase portraits to correspond to the (δ, u) values reported in the bifurcation diagram
(upper-left panel).

Two stable equilibria exist, both with positive coordinates (α1, α2): they correspond to
bends in the same direction but with different radii.

In order to better understand what happens in this case, let us consider the scenario in which
at u = uD = uC = 20.5 the steering angle is increased from δ = 0 to δ = δC = 4 (see the
upper-left panel of Figure 13). At δ = 0, e3 is the only equilibrium and it is globally stable.
Increasing δ, two more equilibria appear (e1, e2) when the bifurcation curve S1,2 is crossed,
but the driver does not feel anything because e3 is unaffected by the bifurcation, although its
global stability is lost. If δ is further increased, when the bifurcation curve SN2,3 is crossed,
the equilibrium e3 suddenly disappears, giving rise to a rapid transient with the car negotiating
a tighter bend.

4.2.3. Case OV2

In this case, a stable limit cycle is found for suitable (δ, u) combinations. The parameter region
in which such a limit cycle exists is bounded by a supercritical Hopf bifurcation curve (H)

and a homoclinic bifurcation curve. Additionally, an SN bifurcation is present (Figure 14).

Five equilibria are present: four of them are unstable (e1 and e5 are foci, e2 and e4 are
saddles) and one is stable (e3). Actually, the only stable equilibrium is globally stable, i.e.
any perturbation is absorbed.
The homoclinic bifurcation gives birth to a stable limit cycle, whose basin of attraction
is delimited by the two branches of the stable manifold of the saddle e2. Notice that this
bifurcation cannot be predicted by inspection of the handling diagram.
At the SN2,3 bifurcation, the stable equilibrium e3 collides with the saddle e2 and disap-
pears. The only possible stable behaviour is now oscillatory, namely the stable limit cycle.
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Vehicle System Dynamics 1555

Figure 14. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case OV2 of Figure 5. The phase portraits to correspond to the (δ, u) values reported in the bifurcation diagram
(upper-left panel).

The amplitude of the oscillation is considerable, being equal to 0.034 rad = 2◦. This
behaviour has been occasionally reported by professional drivers as a very dangerous
situation.
The stable limit cycle disappears by shrinking on the unstable focus e1 at the supercritical
Hopf bifurcation. The cycle, which was born with infinite period at the homoclinic bifur-
cation, has now a period ranging from 2.55 to 2.65 s in the parameter window of Figure 14.
Now e1 becomes stable and its basin of attraction, which is the same of the former limit
cycle, is bounded by the manifolds of the saddle e4. Notice that in [8], some conditions
for checking the local stability of an equilibrium from the handling diagram are reported.
In principle, using those conditions, it is possible to reveal the Hopf bifurcation, but it is
by no means possible to assess whether the limit cycle is stable.

4.2.4. Case OV3

As for the previous case, a stable limit cycle of considerable amplitude exists for suitable
(δ, u) combinations, namely in a region of the parameter plane which is bounded by an SN
homoclinic (see [2, p. 250]) bifurcation curve (SN2,3) and by a supercritical Hopf bifurcation
curve (H) (Figure 15).

Five equilibria are present, four unstable (e1 and e5 are foci, e2 and e4 are saddles) and one
globally stable (e3). This phase portrait is topologically equivalent to the one labelled with

in the OV2 case.
At the SN homoclinic bifurcation SN2,3, the saddle e2 and the stable equilibrium e3 collide.
It must be pointed out that, in the phase portrait , both branches of the unstable manifold
of e2 terminate into the stable equilibrium e3. As the bifurcation occurs, this generates
a homoclinic loop and then a limit cycle which has initially finite amplitude and infinite
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1556 F. Della Rossa et al.

Figure 15. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).
Case OV3 of Figure 5. The phase portraits to correspond to the (δ, u) values reported in the bifurcation diagram
(upper-left panel).

period. We remark that this type of bifurcation cannot be predicted by inspection of the
handling diagram.
After the SN2,3 bifurcation, the only stable behaviour is oscillatory, namely a stable limit
cycle. The amplitude of the limit cycle is very large (up to 0.6 rad) and decreases as δ is
increased. Notice that this phase portrait is present in a wide region of the parameter plane.
The stable limit cycle shrinks on the unstable focus e1 at a supercritical Hopf bifurcation,
disappearing and changing the stability of e1, which becomes now globally stable. On the
Hopf curve, the cycle has a period ranging from 2.35 to 2.45 s.

4.2.5. Case OV4

In this case,s we find two SN bifurcations, a homoclinic bifurcation, and a supercritical Hopf
bifurcation (Figure 16). Again, a stable limit cycle of considerable amplitude is found.

If the speed u and the steering angle δ are small, three equilibria exist but only one of
them is stable (e4). The remaining two (e3 and e5) are saddles, and their stable manifolds
form the boundary of the basin of attraction of e4.
On the SN3,4 bifurcation curve, the stable equilibrium e4 collides with the saddle e3 and
disappears. After the bifurcation, no stable behaviour is present, namely all trajectories
diverge and the vehicle is fully unstable.
If δ and/or u are increased, the isolated branches of the handling diagram generate (via
SN bifurcation SN1,2) two unstable equilibria, the saddle e1 and the unstable focus e2.
One of the branches of the stable manifold of e1 is connected to e2. The vehicle is still
fully unstable.
Crossing the homoclinic bifurcation, the stable and unstable manifolds of e1 exchange
their positions. A stable limit cycle is generated, with considerable amplitude (about
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Vehicle System Dynamics 1557

Figure 16. Bifurcation diagram of the single-track model of Figure 1 with respect to the input parameters (δ, u).

Case OV4 of Figure 5. The phase portraits to correspond to the (δ, u) values reported in the bifurcation diagram
(upper-left panel).

0.1 rad = 6◦). The limit cycle corresponds to the only stable behaviour, although its basin
of attraction is rather small.
The limit cycle shrinks onto the unstable focus e2, which thus becomes stable (supercritical
Hopf bifurcation). Its basin of attraction (as in the previous panel ) is bounded by the
stable manifolds of the saddle e1. On the Hopf curve, the disappearing cycle has a period
ranging from 1.6 to 1.8 s.

5. Conclusions

The nonlinear dynamic behaviour of a vehicle cornering on even road surface has been studied.
In particular, the bifurcation analysis of a two d.o.f. model has been performed to have an
overview of its possible different dynamic behaviours. Ten different combinations of front
and rear tyre characteristics have been considered, corresponding to five understeering and
five oversteering vehicles. The bifurcation analysis has been conducted by varying two driver’s
input, namely the vehicle speed and the front wheel steering angle. A continuation technique
has been employed to perform a two-parameter bifurcation analysis.

The results have been fully validated. Actually each phase portrait associated with a bifurca-
tion plot has been analysed establishing a correspondence between the steady-state solutions
computed in time domain by means of the nonlinear model and the corresponding steady-state
solutions computed by means of the handling diagram theory.

An impressive variety of different possible dynamic behaviours appears by changing the
nonlinear tyre characteristics even slightly. If the vehicle is always understeering, no bifurca-
tions occur and unstable steady-state solutions never appear. This is a very good occurrence
for active safety. If the vehicle is understeering at low centripetal acceleration levels only, or
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1558 F. Della Rossa et al.

isolated branches of the handling diagram are present, a number of quite different bifurcations
may arise, depending on relatively small variations of the effective axle characteristics (i.e. tyre
characteristics). Bifurcations occur if the forward speed is relatively high. Usually, increasing
the steady-state steering angle decreases the speed at which the bifurcations occur. Hete-
roclinic, homoclinic, Saddle-Node, Bogdanov–Takens bifurcations have been reported. An
unstable limit cycle has been also found.

The oversteering bifurcation cases are much more involved than the undesteering ones. The
same considerations introduced for the undesteering vehicle hold. Heteroclinic, homoclinic,
SN and Hopf bifurcations have been found and reported. Stable limit cycles have been also
found. Extremely strange situations may occur, especially when multiple attractors are present.
In this case, the vehicle can have different stable running conditions for the same driver’s input.

The above results hold under the hypothesis of small values of both the lateral slips and
the steering angle. A further investigation could be performed in the future removing such
hypotheses and considering the full spin-out. No longitudinal forces at the tyres have been
introduced and the body roll motion and the elastokinematics of the axles have been neglected.
However, the different combinations of tyre characteristics taken into consideration provide –
at least qualitatively – information on the effects of the neglected issues.

The handling diagram theory has been a useful source of information for bifurcation anal-
ysis. However, although some bifurcations can be detected by means of such a tool, only a
partial understanding of the bifurcation scenario can be deduced by means of the handling
diagram theory. Complex bifurcations, such as heteroclinic and homoclinc connections, and
Hopf bifurcations remain undetectable by a simple inspection of the handling diagram.

The bifurcation analysis illustrated in the paper could be informative for chassis designers
and control engineers who have to deal with the active safety of vehicles. In particular, it is
confirmed that an understeering vehicle is to be always recommended. Besides, the original
result coming from bifurcation analysis,is that the axle characteristics at the front and rear
must be substantially different to obtain the widest possible attraction basin and ensure the
maximum robustness of the design.
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Appendix. Bifurcations in second-order continuous-time systems

In this appendix, which is oriented to readers not familiar with bifurcation analysis, we briefly review and describe the
terms used in the paper. A detailed treatment of the topic can be found in standard textbooks, e.g. [2,22]. The model
considered in the paper is a second-order, continuous-time, autonomous (i.e. time-invariant) system of the form

ẋ1(t) = f1(x1(t), x2(t), p),

ẋ2(t) = f2(x1(t), x2(t), p),
(A1)

or ẋ(t) = f (x(t), p) in vector notation. The two-dimensional vector x(t) = [x1(t)x2(t)] is the state and p =
[p1 p2 . . . pm] are the system parameters. For all possible initial states x(0), we assume that the solution x(t)
of system (A1) is univocally defined for all t ≥ 0. The oriented curve obtained by projecting a solution x(t) onto the
plane (x1, x2) is a trajectory. The set of the trajectories obtained for all possible x(0) is the phase portrait.

For a given p, an equilibrium of system (A1) is a state x̄ such that ẋ = f (x̄, p) = 0. In most situations, the stability
of x̄ can be discussed through linearisation, namely by analysing the stability of the linear system v̇(t) = J(x̄, p)v(t),
where

J(x̄, p) =
[

∂f (x, p)

∂x

]
x=x̄

=

⎡
⎢⎢⎣

∂f1(x, p)

∂x1

∂f1(x, p)

∂x2

∂f2(x, p)

∂x1

∂f2(x, p)

∂x2

⎤
⎥⎥⎦

x=x̄

is the Jacobian matrix at x = x̄. The equilibrium x̄ of system (A1) is asymptotically stable (or stable for brevity) when
all trajectories starting sufficiently close to x̄ remain close to it for all t, and converge to x̄ as t → +∞. The basin of
attraction B(x̄) of a stable equilibrium is the set of all initial states from which the trajectories converge to x̄, i.e.

B(x̄) = {x(0)|x(t) −→ x̄}.
A stable equilibrium x̄ is globally stable when B(x̄) is the entire phase plane (x1, x2), i.e. trajectories converge to x̄
from any initial state x(0) (with at most the exception of some isolated points and/or lines).

If we denote by λ1, λ2 the eigenvalues of J(x̄, p), then x̄ is stable if Re(λi) < 0 for i = 1, 2, namely if both the
eigenvalues have a negative real part. On the contrary, if Re(λi) > 0 for some i, i.e. if at least one eigenvalue has a
positive real part, the equilibrium x̄ is unstable, namely there are trajectories started arbitrarily close to x̄ that diverge
from it.

If we exclude non-generic situations (i.e. λ1 = λ2 or Re(λi) = 0 for some i), the eigenvalues λ1, λ2 can be
placed in the complex plane in five different qualitative positions only, to which five different phase portraits in the
neighbourhood of x̄ are associated. In these five cases, the equilibrium x̄ is called, respectively, stable/unstable focus,
stable/unstable node, or saddle (Figure A1). Note that stable (resp. unstable) foci/nodes are obviously stable (resp.
unstable) equilibria, and that saddles are unstable too.

The stable manifold WS(x̄) is the set of initial states x(0) such that x(t) → x̄ as t → +∞. Similarly, the unstable
manifold WU (x̄) is the set of x(0) such that x(t) → x̄ as t → −∞. All the states in the neighbourhood of a stable
(resp. unstable) focus/node form its stable (resp. unstable) manifold. Instead, the stable (resp. unstable) manifold of
a saddle is formed by the trajectories that converge to x̄ in forward time (resp. backward time, i.e. by reversing the
arrows on the trajectories) (see Figure A1(c)).
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(a) (b) (c)

Figure A1. The phase portraits of the generic second-order systems in the neighbourhood of x̄, with the corre-
sponding position of λ1, λ2 in the complex plane: (a) stable focus; (b) stable node (the unstable focus and unstable
node are obtained from (a) and (b), respectively, by reversing the arrows on the trajectories and by changing the sign
of the real part of the eigenvalues); (c) saddle.

A key notion in bifurcation theory is that of structural stability. For a given parameter value p = p̄, system
ẋ = f (x, p̄) is structurally stable if the phase portraits of all the systems ẋ = f (x, p) with |p − p̄| < ε (ε > 0 arbitrarily
small) are topologically equivalent, i.e. they can be obtained one from each other by continuous deformation. By
contrast, by perturbing the parameter p of a non-structurally stable system, the behaviour of the system undergoes
some structural change, e.g. an equilibria is born, or it disappears, or it switches from stable to unstable. A bifurcation
is exactly such a qualitative change in the system behaviour that takes place when, by varying p, a value p = p∗ of
non-structural stability is crossed. In the following, we list the types of bifurcations we found in analysing the model
presented in the paper.

In an SN bifurcation, the system has two distinct equilibria on one side of the bifurcation (say, for p < p∗), one of
them is a node and the other is a saddle. By varying p, the two equilibria collide (and coincide) at p = p∗ whereas, for
p > p∗, no equilibria exist (Figure A2(a)). If the node existing for p < p∗ is stable, the bifurcation is catastrophic: if
the system is in the stable state x̄ = x̄(p) for p < p∗, when p increases above the bifurcation value p = p∗ the stable
node disappears and x(t) jumps faraway towards, e.g. another stable equilibrium or periodic orbit (if it exists), or
diverges to infinity. An SN bifurcation can be revealed by analysing the Jacobian evaluated at x̄ = x̄(p) since, when
p is varied, det(J(x̄(p), p)) vanishes at the bifurcation point (i.e. one of the eigenvalues λ1, λ2 becomes zero).

A transcritical bifurcation is found when, by varying p, two distinct solution branches of the equilibrium equation
f (x̄, p) = 0 intersect and exchange their stability. In the typical scenario, the system has two equilibria on one side
of the bifurcation (p < p∗), one of them stable and the other unstable. By varying p, the two equilibria collide at
p = p∗ and then, for p > p∗, they become again distinct, but the stable branch has become unstable and vice versa
(Figure A2(b)). Analytically, a transcritical bifurcation is characterised by det(J(x̄(p), p)) = 0 at p = p∗ (as for the
SN bifurcation), plus suitable conditions on the higher-order derivatives of f (x, p) [22, Ch. 3].

In a pitchfork bifurcation, the system has three distinct equilibria for p < p∗ and only one for p > p∗. The two
most interesting scenarios are those of Figure A3. In the first one (supercritical pitchfork), two stable and one
unstable equilibria collide leaving only one stable equilibrium. In the dual case (subcritical pitchfork), the bifurcation
is catastrophic, since no stable equilibrium exists for p > p∗. As for the transcritical bifurcation, a pitchfork is
characterised by det(J(x̄(p), p)) = 0 at p = p∗ plus suitable conditions on the higher-order derivatives of f (x, p) [22,
Ch. 3].

(a) (b)

Figure A2. (a) Saddle-node and (b) transcritical bifurcations in second-order systems. Continuous (resp. dot) lines
represent stable (resp. unstable) equilibria.
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(a) (b)

Figure A3. (a) Super- and (b) sub-critical pitchfork bifurcations in second-order systems.

A Hopf bifurcation is the transformation of a focus-type equilibrium into a limit cycle, i.e. a periodic, oscillatory
solution of system (A1). In a supercritical Hopf bifurcation, the focus turns from stable to unstable at p = p∗ and,
at the same time, a stable (i.e. attracting) limit cycle is born, initially with zero amplitude. Therefore, by increasing
p from p < p∗, a stationary behaviour is smoothly replaced by an oscillatory one. In a subcritical Hopf bifurcation,
instead, the limit cycle is unstable (i.e. it repels all neighbouring trajectories) and surrounds the stable equilibrium,
actually delimiting its basin of attraction. In this case, the bifurcation is catastrophic (Figure A4). A Hopf bifurcation
can be detected by analysing the eigenvalues λ1,2 = a ± iω of the Jacobian matrix of the focus, since the bifurcation
corresponds to the change of sign of the real part a, i.e. λ1,2 = ±iω∗ at p = p∗. The period τ of the emerging limit cycle
is also related to λ1,2, since τ → 2π/ω∗ as p → p∗.

A homoclinic bifurcation can be interpreted as the collision of a limit cycle with a saddle. A typical scenario is that
of Figure A5: a stable limit cycle exists for p < p∗, containing an unstable focus at the inside. As p → p∗, the cycle
comes closer and closer to a saddle and, at the same time, its period τ → ∞. At p = p∗ the cycle is replaced by a
homoclinic loop, formed by the stable and unstable manifolds of the saddle, which have joined. For p > p∗, the loop
breaks and no stable equilibria nor cycles exist. Alternatively, we can interpret the bifurcation as a mechanism of birth
of a limit cycle (for decreasing p) but, differently from the Hopf case, the emerging cycle has non-zero amplitude
and an unbounded period. The dual situation (unstable limit cycle with stable focus) is also possible (not reported for
brevity).

A heteroclinic bifurcation takes place at p = p∗ when the stable manifold of a saddle becomes coincident with
the unstable manifold of another saddle. Crossing the value p∗, the behaviour in the vicinity of the saddles does
not modify qualitatively, but a change takes place in the global structure of the phase portrait (Figure A6). This has
typically an important impact on the basin of attraction of some neighbouring stable equilibrium.

An effective bifurcation analysis requires the use of suitable algorithms for numerically deriving the bifurcations
curves. The most used algorithm is continuation, which is implemented in a number of software packages (in our
study,s we used MATCONT [23]). Generally speaking, a continuation problem consists in finding a curve in a (q + 1)-
dimensional space, when the curve is defined by a system of q equations g(z, p) = 0. Here, z ∈ Rq, p is scalar, and g
is a q-dimensional vector function. If a point (z0, p0) of the curve is known, i.e. g(z0, p0) = 0, a predictor–corrector
algorithm [2] can be used to find a sequence of points belonging to the curve.

(a) (b)

Figure A4. (a) Super- and (b) sub-critical Hopf bifurcations in second-order systems.
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Figure A5. Homoclinic bifurcation in second-order systems.

Figure A6. Heteroclinic bifurcation in second-order systems.

Every bifurcation curve can be obtained by solving a suitable continuation problem. For example, given the system
ẋ = f (x, p), the curve x̄ = x̄(p) describing the dependence of an equilibrium point x̄ on a parameter p (Figure A2(a))
is simply defined by f (x, p) = 0. While obtaining this curve by point-by-point continuation, one can monitor a series
of bifurcation functions, designed to change sign if a bifurcation occurs. For instance, as already pointed out above,
det(J(x̄(p), p)) = 0 when an SN bifurcation occurs. Then, to derive the entire SN bifurcation curve in a two-parameter
plane (p1, p2) (as shown in Section 4), the following continuation problem has to be solved:

f (x, p1, p2) = 0, (A2)

det(J(x̄(p), p1, p2)) = 0. (A3)

This system defines a curve in the four-dimensional space (x1, x2, p1, p2), whose projection onto the (p1, p2)-plane
is the SN bifurcation curve. Similar procedures are used, upon defining a suitable bifurcation function, to analyse all
types of bifurcations.
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